learningalgorithm.cpp
36 void Pattern::setInputsOutputsOf( Cluster* cl, const DoubleVector& ins, const DoubleVector& ous ) {
128 Descriptor d = addTypeDescription( type, "Represent a pattern of inputs/outputs for Clusters", "A Pattern is specified by groups of three parameters: cluster, inputs and outputs. The inputs and outputs parameters specify the values to set on the neurons of the cluster specified by the corresponding cluster parameter. The inputs and outputs parameter are not mandatory but specify a cluster without setting inputs or outputs has no effect" );
129 d.describeObject( "cluster" ).type( "Cluster" ).props( IsMandatory | AllowMultiple ).help( "The Cluster on which the inputs and outputs parameters referes" );
130 d.describeReal( "inputs" ).props( IsList | AllowMultiple ).help( "The values to set on the cluster's input neurons" );
131 d.describeReal( "outputs" ).props( IsList | AllowMultiple ).help( "The values to set on the cluster's output neurons" );
147 PatternSet LearningAlgorithm::loadPatternSet( ConfigurationParameters& params, QString path, QString prefix ) {
155 #warning Se patternSet copia il Pattern creato all interno, allora quelli creati qui creano un leak perche non vengono mai distrutti !!
161 void LearningAlgorithm::savePatternSet( PatternSet& set, ConfigurationParameters& params, QString prefix ) {
void setOutputsOf(Cluster *, const DoubleVector &)
set the outputs associated with Cluster passed
Definition: learningalgorithm.cpp:31
void stopRememberingGroupObjectAssociations()
TypeToCreate * getObjectFromParameter(QString param, bool alsoMatchParents=false, bool configure=true, bool forceObjectCreation=false)
PatternSet loadPatternSet(ConfigurationParameters ¶ms, QString path, QString prefix)
Utility function for loading a PatternSet from a ConfigurationParameters.
Definition: learningalgorithm.cpp:147
const DoubleVector & outputsOf(Cluster *) const
return stored information if exists, otherwise it return a zero vector
Definition: learningalgorithm.cpp:53
void setInputsOutputsOf(Cluster *, const DoubleVector &inputs, const DoubleVector &outputs)
set the both inputs and outputs associated with Cluster passed
Definition: learningalgorithm.cpp:36
static void describe(QString type)
Add to Factory::typeDescriptions() the descriptions of all parameters and subgroups.
Definition: learningalgorithm.cpp:127
QStringList getParametersWithPrefixList(QString group, QString prefix) const
const DoubleVector & inputsOf(Cluster *) const
return stored information if exists, otherwise it return a zero vector
Definition: learningalgorithm.cpp:43
void createGroup(QString groupPath)
void setInputsOf(Cluster *, const DoubleVector &)
set the inputs associated with Cluster passed
Definition: learningalgorithm.cpp:26
bool startObjectParameters(QString groupPath, QString typeName, ParameterSettable *object)
static Descriptor addTypeDescription(QString type, QString shortHelp, QString longHelp=QString(""))
QString getValue(QString path, bool alsoMatchParents=false) const
virtual void save(ConfigurationParameters ¶ms, QString prefix)
Save the actual status of parameters into the ConfigurationParameters object passed.
Definition: learningalgorithm.cpp:103
TypeToCreate * getObjectFromGroup(QString group, bool configure=true, bool forceObjectCreation=false)
PatternInfo & operator[](Cluster *)
return the stored information
Definition: learningalgorithm.cpp:63
QStringList getGroupsWithPrefixList(QString group, QString prefix) const
void savePatternSet(PatternSet &set, ConfigurationParameters ¶ms, QString prefix)
Utility function for saving a PatternSet to a ConfigurationParameters.
Definition: learningalgorithm.cpp:161
AllowMultiple
void startRememberingGroupObjectAssociations()
virtual void configure(ConfigurationParameters ¶ms, QString prefix)
Configures the object using a ConfigurationParameters object.
Definition: learningalgorithm.cpp:67
unsigned int numNeurons() const
Return the number of neurons (the length of input and output arrays)
Definition: cluster.h:82
void createParameter(QString groupPath, QString parameter)
This file contains the declaration of Neural Network Class.
IsMandatory